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Conventional (terrestrial) survey technologies (e.g.,
GNSS and total stations)

e Don’t work underwater!

e Can only survey as deep as you can
wade

* Dangerous in high-energy
environments




Ship- and boat-based technologies (e.g., sonar)

* NOAA defines the Navigable Area Limit
Line (NALL) as the offshore-most of the
following:

e The seaward line which is offset

horizontally by 0.8mm (from MHW) at the
scale of the largest scale chart of the area

e Ex: 64 meters for a 1:80,000 scale chart
e The surveyed 3.5-meter depth contour

e The inshore limit of safe navigation for the
survey vessel (kelp, rocks, breaking waves,  NoaA - Specs &
etc.) — subject to CO discretion Deliverables, 2018

e MBES generally inefficient in shallow
water

Large ships unlikely to be
navigating shoreward of
NALL!




Why we care about these

shallow, nearshore areas:
* Lack of nearshore coastal data

hinders

e Storm surge modeling
e Benthic habitat mapping
* Ex: coral reef habitat
* Analysis of coastal hazards
* Coastal resilience initiatives
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Why satellite-based approaches are of
interest for filling nearshore data void

* ALB can be extremely effective
technology for filling nearshore
data void

* But, expensive to deploy

e Say you need bathymetry of
Manihiki Island in the South
Pacific (extremely remote)
» Often you only get one chance to
acquire data

* What if water clarity happens to
be poor at that particular time?

 Satellite-based approach

* Avoids deploying aircraft and
mission crew to remote coastal
area

* Revisit cycle allows many chances
to get good water clarity

Manihiki

/ Island
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Can ICESat-2 ATLAS map bathymetry and

assist in filling the nearshore data void?

S—r8 - Launched from Vandenberg

| — S AFB, Sept 15, 2018, 6:02 am
IﬂEﬁahQ B S (local)
I

 Carries single sensor: ATLAS
—green (532 nm), photon-
counting lidar



Summary of previous results (some presented at

JALBTCX)

« NASA MABEL (high-
altitude airborne
emulator for ATLAS)
capable of mapping
bathymetry

* Agrees with reference

bathymetry to within
0.7 m RMS

Visible Infrared Imaging
Radiometer Suite
(VIIRS) Kd490 useful in
assessing utility of
ATLAS for bathymetric
mapping worldwide

Elevation (m above WGS84)

Forfinski-Sarkozi, N.A., and C.E. Parrish, 2016.
Analysis of MABEL Bathymetry in Keweenaw Bay
and Implications for ICESat-2 ATLAS. Remote
Sensing, Vol. 8, No. 9.

Forfinski-Sarkozi, N.A., and C.E. Parrish, 2019.
Active-Passive Spaceborne Data Fusion for
Mapping Nearshore Bathymetry. Photogrammetric
Engineering and Remote Sensing, Vol. 85, No. 4,
pp. 281-295.

Photon Elevations along MABEL Trackline (Channel 11)

3 \ b .............. .............. ................. ............ .....

North

S B s s aal

f t t
40 30 20

Delta Time (seconds)

Where and when ATLAS &
bathymetric mapping
may be feasible




Objectives of current (post-launch)
research

1. ldentify examples of ICESat-2 ATLAS bathymetry

2. Empirically assess bathymetric mapping accuracy
through comparison against reference data

3. Assess ATLAS's maximum depth penetration
capability as a function of K, and Secchi depth
through analysis at multiple locations around the

globe



Elevation (m)

With ICESat-2 now on orbit, many examples of
bathymetry
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due to volume
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More examples

ATLO3_20181019195533_03240101_200_01.h5
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More examples
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More examples
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More examples

Great Bahama Bank 316 km of continuous bathymetry!

ATLO3_20181026200436_04310101_201_01.h5
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But...small problem: what we’ve been calling
bathymetry is not really bathymetry, because
geolocated seafloor photon returns are in wrong spot

Geolocated bottom
return photons before

refraction correction
(ATLO3 output)

©  Refraction-corrected
bottom return
photons

Water surface

Seafloor



Refraction correction algorithm:

Air/water
interface

Input:

Geolocated seafloor photon returns
Water surface model

Refractive indices of air and water
Angle of incidence of photon
Azimuth of unit pointing vector

For each seafloor photon return {

}

Compute horizontal and vertical offsets AY,
AZ (as shown in figure) from simple
geometry

Project the horizontal offset, AY, onto the
(E, N) axes using azimuth of unit pointing
vector

Apply AE, AN, AZ to unrefracted photon
coordinates

Optional: Earth curvature correction (corrects
for Earth curvature across ATLAS’s swath)
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Find Measurement XYZ Biases with Topographic Lidar
(R205)

Original ATLO3
. Measured Data

ATL03_20181122060325_08340107_205_01 (gt3r): Descending
Observed Data Correction (1 m Raster)
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Perform Refraction Correction

Elevation (m)
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Comparison against EAARL-B reference
data
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Visible Infrared Imaging Radiometer Suite
(VIIRS) Kd(490) > Secchi depth (Empirical
estimates)
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Estimating Secchi Depth from K

No exact conversion exists or is possible, but many have
been discussed (sometimes debated) at JALBTCX
Workshops

VA 115 Guenther, 198
= ther, 1985
SD K, — 003 uenther

, _4.80—lnR
Sb Kd+C

Feygels et al., 2014

P 1.7 Guenther, 1985,
SD — K_d citing Poole-Atkins



Quick aside regarding Secchi depth measurements

Proc. SPIE 9262, Lidar Remote Sensing for Environmental Monitoring XIV, 92620X
(26 November 2014); doi: 10.1117/12.2069871

arities of hydro lidar missions in the Asia-Pacific region

rgels * DYuri Kopilevich®, Joong Yong Park , Minsu Kim ?, Jennifer Aitken *,
*Optech, Inc.

7225 Stennis Airport Drive, Kiln, Mississippi, 39556, USA

“...in several studies no difference was found between large and small disks

visibility range. Generally speaking, the Secchi depth for disk is expected to
exceed that for white one, but in very clear waters, according to

experiments, both the pure white and black-and-white disks disappear not
due to a loss of contrast but because the decrease in the disk’s angular size
makes it too small to be seen” (Feygels et al., 2014).

Meaning: it doesn’t matter which type of disk you use?! *

* In clear water



ICESat-2 ATLAS maximum depth
mapping capability analysis
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Next Steps

e Continue to test in additional areas
* TPU for ICESat-2 ATLAS bathymetry

e Active-passive fusion-based bathymetric mapping
approach using ICESat-2 ATLAS and Landsat 8 OLI
and/or Sentinel 2 MSI

* WebGIS containing

nearshore bathymetry
* To be developed in
Summer 2019 with
funding from
AmericaView (USGS)
* Will be made public




Conclusions

e |CESat-2 ATLAS can reliably map bathymetry
* Agreement with EAARL-B data to within 0.5 m RMS
* Depth penetration to ~1 Secchi depth

* Great potential for filling nearshore data void,
especially when combined with SDB

e Recommendations
e Future dedicated bathymetric mapping satellite mission
* Proposed name change:

JASLBTCX

|

spaceborne
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